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Abstract
We investigate recently observed experiments in the strongly correlated 2D
systems (rs � 1) (low-density 2D plasmons, metallic behaviour of 2D systems
and frictional drag resistivity between two 2D hole layers). We compare them
with our theoretical results calculated within a conventional Fermi liquid theory
with RPA screening.

PACS numbers: 73.40.−c, 71.30.+h, 73.20.Mf

1. Introduction

A great deal of attention has recently been focused on low-density two-dimensional
(2D) systems [1–3], occurring in 2D carriers confined in semiconductor inversion layers,
heterojunctions, quantum wells and superlattices. As the density of a system decreases,
the correlation arising from the interactions between carriers substantially increases. At
zero temperature, the physical properties of a 2D system depend on its carrier density n,
which is expressed in terms of the dimensionless coupling parameter rs (≡1/aB

√
πn, where

aB (≡h̄2/me2) is the effective Bohr radius). The parameter rs measures the carrier–carrier
coupling strength as the ratio between the Coulomb potential energy and the free-carrier kinetic
energy (Fermi energy).

An important motivation to explore the large rs regime is the fundamental issue of the
relevance of the Fermi liquid concept to a strongly correlated 2D carrier system at large values
of rs . This question has recently been actively debated in the literature [2] in the context
of the collection of transport anomalies in 2D systems referred to as the 2D metal-insulator
transition (2D MIT) phenomena. The key question is whether an interacting 2D electron
(or hole) system at large rs values is a Fermi liquid or not.

In this paper, we present recent unusual experiments in the large rs regime [1–3] and
compare them with our theoretical results based on the conventional Fermi liquid theory with
random-phase approximation (RPA) screening. (This review paper is based on our recent
work [4–6].) Screening in a system is described through the microscopic dielectric function
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ε(q, ω), which is described with the theory of linear density response to an electrical potential.
Screening theory within RPA has successfully explained many physical properties in the high-
density regimes (rs � 1). Thus, a detailed Fermi liquid theory must be developed first within
a realistic model for the relevant experiments and only in the context of a careful comparison
between such a theory and the experimental results, one can discuss the applicability (or, not)
of the Fermi liquid theory to the system in question. In section 2, we study the low-density
2D plasmon; in section 3, the metallic behaviour of 2D systems and in section 3, frictional
drag resistivity between two 2D hole layers.

2. 2D plasmon

Recent inelastic light (Raman) scattering based on direct measurements [1] of 2D plasmon
dispersion in high-quality, low-density (as low as n ≈ 5 × 108 cm−2 corresponding to rs

as high as 25) electron systems in GaAs quantum wells finds remarkably good agreement
between the measured 2D plasmon dispersion and the simple classical formula (ωp ≈ ωcl =
(2πne2/κm)1/2√q where κ is the background lattice dielectric constant) up to wave vectors
as large as q ∼ 2kF . Earlier experimental measurements [7] of the 2D plasmon dispersion in
semiconductor structures were typically restricted to higher carrier densities (rs � 1) and lower
wave vectors (q ∼ 0.1–0.2kF ) where the classical q1/2 plasmon-dispersion relation is valid by
virtue of the applicability of the long wavelength f -sum rule. The unexpected finding [1] that
the experimental 2D plasmon dispersion follows quantitatively the classical q1/2 formula up to
large values of q/kF (∼2) even for very strongly interacting (rs ∼ 25) 2D electron systems is
a significant puzzle, particularly in view of the extensive existing theoretical literature [8–10]
on finite wave-vector many-body and non-local plasmon-dispersion corrections showing very
large deviations from the classical plasma frequency.

By carrying out a realistic RPA calculation of the finite temperature, the finite wave
vector 2D plasmon dispersion in the actual GaAs quantum wells used in [1], we provide
a partial resolution of the puzzle posed by the data presented in [1]. Within RPA
including local field corrections arising from correlation effects, the plasmon modes at
finite wave vectors and finite temperatures are given by the zeros of the dielectric function,
ε(q, ω; T ) = 1 − v(q)�0(q, ω; T ), where v(q) is the Coulomb interaction modified by both
the quasi-2D form factor due to the finite width of the 2D quantum well and correlation-
induced local field effects. �0(q, ω, T ) is the noninteracting 2D finite temperature irreducible
polarizability. The modification of the Coulomb interaction due to correlation-induced local
field corrections is modelled by a static correlation factor G(q), which we calculate within
the Hubbard approximation [9]. We calculate numerically the plasmon dispersion by solving
ε(q, ω; T ) = 0 to obtain ωp(q; n, T ) by incorporating thermal, finite thickness and local field
correlation effects. (All other effects, e.g. phonons, give negligible corrections to the plasmon
dispersion in a low-density GaAs quantum well electron system.)

In figure 1, we show our calculated plasmon dispersion along with the available
experimental data from [1]. We use in our calculations system parameters corresponding
to GaAs–AlxGa1−xAs quantum wells with a well width d = 330 Å and T = 200 mK as
appropriate for [1]. In figure 1(a), the plasmon dispersion for rs = 5.3 (n = 1.2×1010 cm−2) is
shown. In this relatively high-density system, the experimental data lie in the long wavelength
(q < kF = 2.7 × 105 cm−1) and the low-temperature (T � TF = 5.0 K) limit. We find
that the enhancement of plasma frequency by non-local effects is almost cancelled by finite
thickness effects. The local field corrections and finite temperature effects are not important
in this sample since these effects are quantitatively significant only at low n or large rs . In
figure 1(b), we show the plasmon dispersion for rs = 17.2 (n = 1.1×109 cm−2). Experimental



The Role of screening in the strongly correlated 2D systems 6229

r  =5.3s

r  =17.2s

0.0 0.4 0.8 1.2

(a)

(b)

Figure 1. Calculated plasmon dispersions with available experimental data [1] for (a) n = 1.2 ×
1010 cm−2 (rs = 5.3) and (b) n = 1.1 × 109 cm−2 (rs = 17.2). Thick (thin) solid line
indicates the dispersions with all corrections at a finite temperature (the classical local plasmon
dispersion). Thick (thin) dashed lines indicate the dispersions with both non-local effects and
finite thickness effects (non-local effects). The arrows indicate the Fermi wave vector and
Fermi energy. The dots are experimental data points from [1]. The hatched regions indicate
the single-particle excitations (SPE) at T = 0 K. Inset in (a) shows the comparison of finite
temperature (T = 200 mK) plasmon dispersions including all corrections (solid lines) with
zero-temperature classical local dispersions (dashed lines).

data [1] for this sample lie in the effective large wave vector (q > kF = 0.83 × 105 cm−1)

regime. Even in this low-density sample (and at large effective wave vectors), the experimental
data can be seen to agree very well with the classical plasma dispersion and the finite
thickness RPA calculations. Since the non-local effects are almost cancelled by the finite
width correction, we speculate that the reduction of the plasma frequency due to the local field
corrections is perhaps almost exactly cancelled by the thermal enhancement of the plasma
frequency. Our calculated results (figure 1(b)), however, show the local field corrections to
be too large to cancel out with thermal effects in this low-density sample. Our calculated HA
local field corrections are strong overestimations of the actual finite temperature (T/TF ∼ 0.4
in the experiment) local field corrections, and in reality local field corrections, being much
smaller than our HA results, do in fact cancel out with the finite temperature enhancement.
These overestimations may come from the uncertainty of the measured electron density [4]. In
[1], the electron densities are estimated using the classical local plasmon-dispersion formula
based on the fact that the

√
q dispersion seems to apply very well to the experimental plasma

dispersion. In inset, we show the plasmon dispersion including all corrections for densities
n = 1.37 (lower solid line) and 4.1 × 109 cm−2 (upper solid line). The dashed lines in insets
are the classical T = 0 local plasmon dispersion for the density n = 1.1 (lower line) and
3.7 × 109 cm−2 (upper line). Our calculated full plasmon dispersion in insets for somewhat
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higher densities including all corrections also agrees very well with the experiment, just as the
classical T = 0 formula apparently does for the lower densities proposed in the experiment.
Thus, whether the local field corrections are large or not is not obviously clear until one can
measure the experimental electron density using an independent method.

To conclude this section we find considerable cancellations among various physical
mechanisms (e.g., between non-local effects and finite width corrections, and between thermal
effects and local field corrections) in the plasmon dispersion leading to the observed apparent
agreement [1] between experiment and classical 2D plasma dispersion formula.

3. Metallic behaviour of 2D systems

A large number of recent experimental publications on low-temperature transport
measurements in low-density high-mobility 2D electron systems report an anomalously
strong temperature-dependent resistivity in the narrow regime of 0.1–5 K [2]. In contrast
to the scaling theory of localization [11], the measured resistivities at zero magnetic field
show the strong metallic behaviour (dρ/dT > 0 at low temperature) when the carrier density
is reasonably low and the mobility is high. This observed anomaly has led to a great deal
of theoretical activity [2, 5] involving claims of an exotic metal or even a superconducting
system at the interface producing the strong temperature-dependent resistivity. Much more
interest has focused on the possibility of a 2D metal-insulator quantum phase transition being
responsible for the observed strong temperature-dependent resistivity.

In this section, we provide a theoretical explanation for the temperature-dependent
resistivity of the 2D systems in the ‘metallic’ phase (ns � nc, where ns is the 2D density and
nc the critical density which separates ‘metallic’ and ‘insulating’ behaviour) in the absence
of magnetic field [12] by using the Drude–Boltzmann transport theory with RPA screening
and the Dingle temperature approximation to incorporate collisional broadening effects on
screening [7, 13]. In our approach, we leave out quantum corrections, including localization
effects, and neglect the inelastic electron–electron interaction, which may well be significant
in the low-density 2D systems of experimental relevance.

Our calculated resistivity agrees quantitatively with the existing experimental data
[2, 14, 15] on the temperature-dependent low-density resistivity of 2D electron (or hole)
systems. We find that our measured temperature dependence of resistivity can be qualitatively
well understood solely within the framework of Fermi liquid theory. In our theory, the non-
monotonic strong temperature dependence arises from the combination of many mechanisms:
the strong temperature dependence of finite wave vector screening in 2D systems, a quantum-
classical crossover due to the low Fermi temperature in the relevant 2D systems, thermal
average of the transport scattering time and acoustic phonons.

We use the finite temperature Drude–Boltzmann theory to calculate the ohmic resistivity
of the 2D systems, taking into account long-range scattering by the static charged impurity
centres with the screened electron-impurity Coulomb interaction and acoustic phonons
(deformation potential and piezoelectric coupling effects). The screening effect is included
within the RPA with the finite temperature static RPA dielectric (screening) function
ε(q, T ) = 1 + 2πe2/κ̄qF (q)�(q, T ), where F(q) is the form factor for electron–electron
interactions and �(q, T ) is the static polarization. Within the Born approximation, the
scattering time τtot(ε, T ) for our model is given by 1/τtot = 1/τi + 1/τph, where τi(ε, T )

[τph(ε, T )] is the scattering time due to ionized impurities (acoustic phonons). In calculating
the interactions and the RPA dielectric function, we take into account subband quantization
effects in the inversion layer through the lowest subband variational wavefunction. The
resistivity is given by ρ = m/(ne2〈τtot〉), where m is the carrier effective mass, n the effective
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Figure 2. The calculated resistivities for various hole densities, p = 1.0, 1.5, 2.5, 3.5, 4.0 ×
1010 cm−2 (top to bottom) as a function of T for the p-GaAs sample. Calculations include acoustic
phonons, bulk and interface charged impurities.

free carrier density and 〈τtot〉 the energy averaged scattering time. The average is given
by 〈τtot〉 = ∫

dετtot(ε)ε
(− ∂f

∂ε

)/∫
dε

(− ∂f

∂ε

)
ε, where f (ε) is the Fermi distribution function,

f (ε) = {1 + exp[(ε − µ)]/kBT }−1 with finite temperature chemical potential, µ = µ(T , n),
which is determined self-consistently.

In figure 2, we give our numerically calculated resistivity ρ(T , n) for the p-GaAs hole
systems for several hole densities as a function of temeprature. Here, we include two kinds
of ionized impurities, bulk and interface. The impurity densities set the overall scale of
resistivity (ρ ∝ Ni), and do not affect the calculated T and n dependence of ρ(T , n). We
obtain, at low densities, both the observed non-monotonicity and the strong drop in ρ(T ) in the
0.1–2 K temperature range [2, 14, 15], where the phonon contributions to the resistivity are
little as the system enters the Bloch–Grüneisen regime. The strong rise in ρ with increasing T
at low temperature and densities is a direct effect of the thermal weakening of screening. The
competition of many mechanisms in the intermediate temperature range (thermal average of
the scattering time, screening effects and classical effects) induces to the non-monotonicity
of ρ(T ). The acoustic phonon effects dominate all mechanisms at high temperatures and
give rise to a linear increase of ρ(T ). Our high-density results show weak monotonically
increasing ρ(T ) with increasing T similar to experimental observations [2, 14, 15].

In conclusion, we can qualitatively explain the experimental results for 2D metallic
behaviour. Charged impurity scattering, temperature and density dependence of 2D screening,
classical to quantum crossover, and acoustic phonons are playing significant roles in the
experiments and cannot be neglected in theoretical analysis of the ‘2D MIT’ phenomenon.
More detail understanding of 2D metallic behaviour requires a more sophisticated theory
which includes higher order carrier–carrier interactions [16] and disorder induced localization
corrections.

4. Frictional drag in dilute bilayer 2D hole systems

Frictional drag measurements of transresistivity in modulation-doped GaAs electron bilayer
systems have led to significant advances in our understanding of density and temperature
dependence of electron–electron and electron–phonon interactions in 2D systems [17]. In
particular, reference [3] explores the extremely strongly correlated regime of rs ≈ 20–40
whereas the earlier electron drag experiments explored the weak coupling regime of rs < 3.
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The qualitatively new features of the frictional drag in low-density bilayer 2D hole systems are
the following: the low-density hole drag is orders of magnitude larger than the corresponding
electron drag results published in the literature [17, 18] and shows small deviations of the
observed low-density hole drag resistivity from the expected ρ ∼ T 2 Fermi liquid behaviour,
but the peak of ρ/T 2 as a function of T decreases with decreasing density, which is qualitatively
similar to the corresponding electron drag results; for bilayers with unequal hole densities, the
drag resistivity at a fixed temperature plotted as a function of the density ratio p1/p2 decreases
monotonically and does not exhibit a peak at the balance point—this peak, which arises from
the 2kF phonon scattering, is caused by the matching of the Fermi surfaces in the two layers
and has been thought to be a generic Fermi liquid behaviour [18], whose absence in [3] is a
strikingly novel qualitative feature of the low-density hole drag results.

In this section, we calculate the bilayer frictional drag in a many body-Fermi liquid
diagrammatic perturbation theory in dynamically screened hole–hole and hole–phonon
interaction. For the hole–phonon interaction contributions to drag we include both deformation
potential and piezoelectric coupling effects. The five effects included in our theory beyond the
simple Boltzmann theory are: (1) finite layer thickness correction; (2) relaxing the condition
2kFd � 1 typically assumed in the Boltzmann theory (d and kF are respectively the layer
separation and the hole Fermi wave vector) because both kF and d are rather small in the
samples of [3]—this makes large momentum scattering events important in contrast to the
usual 2kFd � 1 case; (3) going beyond the simple RPA (valid only for small rs ) in calculating
the hole polarizabilities and including local field corrections through a HA; (4) including
full phonon effects in the theory which are not negligible even at low T for low-density hole
systems; (5) including vertex corrections in the theory by going beyond the usual Boltzmann
result following the recent work in [19] where it has been shown that for strongly density-
dependent layer conductivities, σ(p) where σ is the dc conductivity for carrier density p, one
must modify the simple Boltzmann result by replacing σ/p by dσ/dp—the simple Boltzmann
result applies in the Drude limit when the density dependence of the transport relaxation time is
weak, and σ ∝ p. Our starting point for the calculation of the drag resistivity is the following
expression:

ρ = β

σ1σ2

dσ1

dp1

dσ2

dp2

∫
q2 d2q

(2π)2

dω

2π

F1(q, ω)F2(q, ω)

sinh2(βω/2)
(1)

where Fi(q, ω) = Im �ii(q, ω)
∣∣usc

12(q, ω)
∣∣. In equation (1), β = 1/T (we use units such that

kB = h̄ = 2e = 1), p1,2 are the hole densities in layers 1 and 2, σ1,2 are the conductivities of
each layer, q is the 2D wave vector in the layer, �11/�22 are the irreducible hole polarizabilities
in each layer and usc

12 is the dynamically screened effective interlayer interaction. When the
drag resistivity is derived from the Boltzmann equation [20], the approximation dσi

dpi
≈ σi

pi

is being made. This approximation is valid for well conducting layers, but becomes invalid at
the low densities relevant here [19].

Combining all these five factors, we are able to account for most of the results of the
measurements. We account for the very large increase of drag, as compared to measurements
of electronic systems. Figure 3 is in good quantitative agreement with the measured data,
to within a factor of 2. This type of agreement is similar to what is obtained in the small
rs limit. Our analysis yields a leading quadratic temperature dependence of the drag in the
limit T −→ 0 (at least as long as the conductivity σ is temperature-independent in that limit).
However, our numerical integration of equation 1 indicates that even at the lowest measured
temperatures, the drag resistivity does not follow a T 2 dependence. There are a number of
reasons for that. First, at the low densities used in [3], the Fermi energy (1 to 2 K) is not
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Figure 3. The drag resistivity (a) and ρ(T )/T 2 (b) as a function of temperature for various
hole densities (p = 1.0, 1.5, 2.0, 2.5 ×1010 cm−2, from top to bottom) calculated with all five
correction factors as explained in the text. We use a hole bilayer system with the layer separation of
d = 300 Å and the well width of a = 150 Å.

much larger than the measurement temperature range. Second, even well below 1 K, the
phonon contribution to drag in the low-density hole bilayers is quite substantial (in contrast to
electron systems where the phonon contribution is typically a factor of 103 smaller for small
layer separations of d = 300 Å or so used in [3]). As such we believe that the experimental
departure from the T 2 behaviour reported in [3] is essentially a manifestation of the fact
that phonon effects remain significant in the experiments, and the asymptotic T 2 regime is
hard to reach in hole systems. We find that our calculated ρ(T ) at low temperature is well
approximated by a T 2.4 behaviour for p = 2.0 × 1010 cm−2 and the exponent increases as the
hole density decreases.

In conclusion, we find a number of striking qualitative differences with the corresponding
(well-studied) electron bilayer case. In particular, the very low-hole Fermi temperature and
the very strong hole–phonon coupling, as compared with the electron case, lead to a number of
unexpected features in the hole transresistivity ρ(T , p) as a function of temperature and hole
density, which are qualitatively different from the corresponding electron case. Our theoretical
results are in reasonable qualitative agreement with recent experimental observations [3]
although the measured drag resistivity is typically larger than the theoretical result.

5. Summary

We investigate recent experiments in low-density 2D systems, i.e., the finite wave-vector
plasmon dispersion, the low-temperature resistivity and frictional drag between two 2D
hole layers. We find that essentially all of the strikingly novel qualitative features of
the observed recent experiments are reasonably well explained by our Fermi liquid-based
theory with RPA screening. We attribute the quantitative disagreement of experiments to
Fermi liquid interaction corrections which are not included in our perturbative leading-order
theory.
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